Differential proinflammatory and prooxidant effects of bone morphogenetic protein-4 in coronary and pulmonary arterial endothelial cells.

نویسندگان

  • Anna Csiszar
  • Nazar Labinskyy
  • Hanjoong Jo
  • Praveen Ballabh
  • Zoltan Ungvari
چکیده

There is increasing evidence that TGF-beta family member cytokine bone morphogenetic protein (BMP)-4 plays different pathophysiological roles in the pulmonary and systemic circulation. Upregulation of BMP-4 has been linked to atherosclerosis and hypertension in the systemic circulation, whereas disruption of BMP-4 signaling is associated with the development of pulmonary hypertension. To test the hypothesis that BMP-4 elicits differential effects in the pulmonary and systemic circulation, we compared the prooxidant and proinflammatory effects of BMP-4 in cultured human coronary arterial endothelial cells (CAECs) and pulmonary arterial endothelial cells (PAECs). We found that BMP-4 (from 0.3 to 10 ng/ml) in CAECs increased O(2)(*-) and H(2)O(2) generation, induced NF-kappaB activation, upregulated ICAM-1, and induced monocyte adhesiveness to ECs. In contrast, BMP-4 failed to induce oxidative stress or endothelial activation in PAECs. Also, BMP-4 treatment impaired acetylcholine-induced relaxation and increased O(2)(*-) production in cultured rat carotid arteries, whereas cultured rat pulmonary arteries were protected from these adverse effects of BMP-4. Thus, we propose that BMP-4 exerts prooxidant, prohypertensive, and proinflammatory effects only in the systemic circulation, whereas pulmonary arteries are protected from these adverse effects of BMP-4. The vascular bed-specific endothelial effects of BMP-4 are likely to contribute to its differential pathophysiological role in the systemic and pulmonary circulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downregulation of bone morphogenetic protein 4 expression in coronary arterial endothelial cells: role of shear stress and the cAMP/protein kinase A pathway.

OBJECTIVE Bone morphogenetic protein 4 (BMP-4) is a transforming growth factor beta family member cytokine that exerts proinflammatory effects on the endothelium and is likely to play a role in atherogenesis. Recent studies suggested that atheroprotective levels of shear stress control endothelial BMP-4 expression; however, the underlying mechanisms remained unknown. METHODS AND RESULTS We fo...

متن کامل

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

Effects of bone morphogenic proteins and transforming growth factor-beta on In-vitro production of endothelin-1 by human pulmonary microvascular endothelial cells.

BACKGROUND Altered endothelial cell (EC)-derived mediator levels, including increased endothelin-1 (ET-1), are hallmarks of human pulmonary arterial hypertension (PAH). Gene mutations for receptors for bone morphogenic proteins (BMP), or transforming growth factor-beta (TGF-beta) cause heritable PAH. The effects of BMPs and TGF-beta on ET-1 production by human pulmonary microvascular EC (HMVEC-...

متن کامل

Endothelium-derived bone morphogenic protein antagonists may counteract the proatherogenic vascular effects of bone morphogenic protein 4.

In the present issue of Circulation, Chang et al1 report novel shear stress–sensitive paracrine mechanisms that regulate the activity of bone morphogenetic proteins (BMPs) in the vascular wall. BMP2 and BMP4 are structurally related members of the transforming growth factorsuperfamily. Recent studies demonstrated that vascular endothelial and smooth muscle cells are a significant source of BMPs...

متن کامل

Impaired transforming growth factor-beta signaling in idiopathic pulmonary arterial hypertension.

Mutations in transforming growth factor-beta family receptor-II, bone morphogenetic protein receptor-2, and activin-like kinase-1 have been associated with pulmonary hypertension. In the present study, we determined that pulmonary arteries in normal lungs and in lungs of patients with emphysema and idiopathic pulmonary arterial hypertension comparably expressed transforming growth factor-beta r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 295 2  شماره 

صفحات  -

تاریخ انتشار 2008